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1. Introduction
Parabolic differential equations in three dimensions and on multilayers often
arise in engineering processes. An example is the rapid thermal processing
(RTP). With the decrease of dimensional scale, one of the essential problems in
the RTP is to control the dynamical temperature in order to reduce temperature
nonhomogenenities during heating up and cooling down which are responsible
for layer nonhomogenenities and slip generation (Leitz et al., 1993; Lie et al.,
1993). Another example is x-ray lithography, an important technology in
micromanufacturing (Ameel et al., 1994). The process consists of x-ray
irradiation of a photoresist, such as polymethylmethacrylate (PMMA), deposited
on a silicon substrate. Prediction of the temperature distribution in three
dimensions in the photoresist and substrate is essential for determining the
effect of high flux x-ray exposure on distortions in the photoresist owing to
thermal expansion and on bonding between resist and substrate. A thorough
understanding of the problem has been hampered by the difficulties involved in
solving the differential equations describing temperature profiles in multilayers
(Cole and McGahan, 1993; Kant, 1988; Madison and McDaniel, 1989). These
difficulties include the unknown value at the interface between layers, and the
small spatial scale measured in micron. In applications of numerical methods for
solving parabolic differential equations on multilayers, the common approach, to
overcome the interface problem, is to apply the iteration method. As such, the
unknown value at the interface between layers is replaced by the value at the
previous time step, and is iterated until the solution is obtained. However, the
iteration method in the three-dimensional case requires too much computational
time. Furthermore, the small spatial scale results in a fine spatial grid size
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compared with the time increment. Thus, the mesh ratio is large, which causes
many second-order accurate schemes, such as the Crank-Nicolson scheme and
two-cycle componentwise splitting method (Marchuk, 1989), to converge slowly
to the steady-state solution. Recently, we developed a generalized three-
dimensional Douglas ADI scheme for solving three-dimensional parabolic
differential equations on multilayers (Dai and Nassar, 1997). It avoids iteration at
each time step and is suited for either simulating fast transient phenomena or for
numerical computations on fine spatial meshes. To overcome the problem with
the unknown value at the interface between layers, the generalized “divide and
conquer” procedure for solving tridiagonal linear systems is applied. As such,
the computational procedure is simple and efficient. 

In this paper, we generalize our three-dimensional numerical procedure to
the case of solving parabolic differential equations with variable coefficients on
multilayers. For many practical problems, conductivity is not constant, in which
case the heat conduction equations have variable coefficients. Since the
differential operators with variable coefficients are not commutative, the
generalized Douglas ADI scheme cannot be used. Therefore, we develop a
generalized two-cycle componentwise splitting scheme, which is uncondition-
ally stable, almost second-order accurate and is suitable for either simulating
fast transient phenomena or for numerical computations on fine spatial meshes.
A numerical model for multilayers that employ this scheme is formulated. 

2. Generalized two-cycle componentwise splitting scheme
Consider the three-dimensional parabolic equation with variable coefficients

where k (x, y, z, t) ≥ a > 0 is the diffusivity coefficient. Let

(2)

where

Obviously, AiAjU ≠ AjAiU, i ≠ j, i.e. operators Aα, α = 1, 2, 3, are not
commutative. 

(1)
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We denote un
ijk as the approximation to U(i∆x, j∆y, k∆z, n∆t), where ∆x, ∆y and

∆z are the grid sizes in the x, y and z directions respectively, ∆t is the time
increment i = 0, …, Nx +1, j = 0, …, Ny + 1, and k = 0, …, Nz + 1. For conveni-
ence, we write ∆x = ∆y = ∆z = h and ∆t = τ . We use the centred-difference
equation,

to approximate, ∂ /∂x 

 K × ∂U/∂x


 where ∧ n

1 represents a tridiagonal matrix,
and so on. Then, the three-dimensional two-cycle componentwise splitting
scheme can be written as follows (Marchuk, 1989):

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

where I is an identity matrix. The above scheme is unconditionally stable and
second-order accurate. Based on the idea in Dai and Nassar (1997) and
Samarskii and Vabishchevich (1994), we develop a generalized two-cycle
componentwise splitting scheme as follows:

(4a)

(4b)

(4c)
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(4d)

(4e)

(4f)

(4g)

where ε ≤ 1 is a small positive number. When ε = 0, the above scheme reduces
to the scheme (3). 

For investigating the stability of the system, we eliminate the medium values
and simplify the scheme (4) as follows:

(5)

where Tn = Tn
1T

n
2T

n
3T

n
3T

n
2T

n
1 and Tn

α = [I + 1–2 (1+ε)τΛn
α]–1[I – 1–2 (1–ε)τΛn

α].
The discussion of the stability of scheme (5) can be seen in the Appendix. 
We obtain from (A5-A6) in the Appendix that ||T|| ≤ 1, where ||T|| = Max

n   
{||Tn||,
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||Tn–1||, …, ||T1||}, and ||un+1||≤||g||+2t0||f||, where u° = g, ||f|| = Maxj ||f j||.
Hence, the scheme (5) is unconditionally stable.

Further, to investigate the behaviour of the scheme when the mesh ratio is
large, we consider the constant coefficient case (K (x, y, z, t ) ≡ K = constant) for
convenience. The amplification factor of G the generalized scheme (5) can be
obtained

(6)

where λα (α =1, 2, 3 is an eigenvalue of Λα.When τλα is large, we obtain from (6)

(7)

while G ~ 1 if ε = 0. Thus Gn in the two-cycle componentwise splitting scheme 
(ε = 0, G ~ 1) goes to zero very slowly as n → ∞. On the other hand, Gn in the
generalized scheme (ε > 0, G < 1) goes to zero much faster. A large τλα may
arise from a large mesh ratio τ K/h2. This can occur as a result of a large K or a
fine spatial grid size compared with the time increment, implying that the two-
cycle componentwise splitting scheme is not well suited for either simulating a
fast transient phenomenon or for computations on a fine spatial mesh.

To determine the accuracy of the generalized scheme, we calculate Tn to
obtain, if 1–2 (1 + ε)τ||Λn

α|| < 1,
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(8)

where Λn = Λn
1 + Λn

2 + Λn
3. The scheme is first-order in accuracy when ε ≠ 0. How-

ever, if ε is small, accuracy will be high. This raises the question as to how small
ε should be chosen if both the stability and accuracy are considered. To obtain a
G value (G ~  1/√2

–
= 0.707) similar to that of the generalized Douglas ADI

scheme when the mesh ratio is large (Dai and Nassar, 1997), we choose ε = 0.05,
which gives, from (7), G ~ 0.741. In practice, the time step τ is usually chosen not
to be very small. Therefore, with ε = 0.05, the accuracy of the generalized two-
cycle componentwise splitting scheme is almost second-order.

3. Generalized divide and conquer procedure
Consider solving a tridiagonal linear system

(9)

The usual approach for solving the above tridiagonal linear system is the
Gaussian elimination technique. This approach results in a procedure called the
“divide and conquer” procedure, shown as follows:

(10a)

(10b)

(10c)

In the above procedure, βk, νk are calculated from k = 1 to k = n, while xk is
computed from k = n to k = 1. A similar procedure that is opposite in direction
can be expressed as
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(11a)

(11b)

(11c)

Combining procedures (10) and (11), one can develop a generalized “divide and
conquer” procedure. To this end, let n = 2 N + 1 for convenience and divide the
system (9) into two subsystems, which consist of the first N equations and the
last N equations, with the (N+1)th equation denoting the interface. As such, the
procedure can be described as follows:

Divide and conquer procedure 

The idea of the above generalized “divide and conquer” procedure can be
applied to a tridiagonal linear system which is divided into many subsystems.
It should be pointed out that the generalized “divide and conquer” procedure is
one type of the domain decomposition methods (Ottega, 1988). Therefore, it is
characterized by a high inherent parallelism. 

4. Numerical models for solving parabolic equations on multilayers
Consider a three-dimensional domain with two layers for convenience, as shown
in Figure 1. Three-dimensional parabolic differential equations on two layers
can be expressed as follows:

(12a)
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We assume that the flux across the interface does not change. That is, at z = H,

(13) 

To obtain the numerical solution in the three-dimensional case, we assume that
there is a mesh grid of Nx × Ny × Nz for each of the layers with the same grid size
∆x, ∆y and ∆z, where (Nx + 1)∆x = L, (Ny + 1)∆y = L and (Nz + 1)∆z = H. We
employ the generalized two-cycle componentwise splitting scheme in Section 2
to solve equations (12). As such, 

(14a)

(14b)

(14c)

(12b)

Figure 1.
Three-dimensional
domain with two layers
for equations (12a) and
(12b) and for example of
equations (20a) and
(20b) in the text

Y

X

Z

L = 0.1 cm

H = 0.01 cm

U2

U   = 310 (K)1

U   = 300 (K)2

U1

H = 0.01 cm

L = 0.1 cm
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(14d)

(14e)

(14f)

(14g)

where l represents the (l)th layer (l = 1, 2). For the interfacial equations, we let, at
any time step n, 

(15)

Hence, the computational procedure of the three-dimensional model is as
follows:

Step 1 is to determine 

and 

by using equation (14a). To this end, we solve two tridiagonal linear systems to
obtain 

and

j = 1, …, Ny, k = 1, …, Nz, independently, then, we substitute

and 

into equation (15) to obtain 
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and

Similarly, step 2 is to determine

and 

by using equation (14b).
Step 3 is to determine

and

by using equation (14c). As such, we express equations (14c), with l = 1, 2, as
three tridiagonal linear systems.

(16a)

(16b)

where i = 1, …, Nx and j = 1, …, Ny. Since ul (l = 1, 2) at the (n – 1–4 )∆t time step
is unknown at the interface between layers, the above two tridiagonal linear
systems cannot be solved. To overcome this difficulty, we apply the generalized
divide and conquer procedure, and calculate the coefficients listed in step 1 of
the procedure, then, substitute the following two equations 

(17) 

into the interfacial equation (15) to obtain

and
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Finally, we solve for the rest of the unknowns in

and

by step 3 of the procedure.
Step 4 is to determine

and

by using equation (14d).
Similar to step 3, step 5 is to determine

and

by using equation (14e).
Similar to step 2, step 6 is to determine

and

by using equation (14f).
Similar to step 1, step 7 is to determine

and

by using equation (14g).
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The above iterations are continued until the steady state solution is obtained.
It should be pointed out that the above procedure is one type of the domain

decomposition methods for solving parabolic differential equations (Chan, 1994). 

5. Numerical examples
To illustrate the advantage of the generalized two-cycle componentwise splitting
scheme, we first consider a three-dimensional parabolic differential equation 

(18)

where K(x, y, z) = µ(x2 + y2 + z2 + 1) and f(x, y, z, t) = –70µxyz e–µt. Its exact
solution is given as

(19)

Initial and boundary conditions are obtained from the exact solution. From (19),
it is seen that for large µ, the solution converges fast to the steady state solution
(which is zero) as time increases. Hence, the equation in (18) has a fast transient
phenomenon.

Equation (18) was solved by using the generalized two-cycle componentwise
splitting scheme (4). In our calculation, we first chose ∆x = ∆y = ∆z = h = 0.02
and ∆t = 0.02. To obtain the steady state solution, the time iteration was
continued until max|u|≤ 10–3 was satisfied. The number of iterations for
different µ values 5, 20 and 100 are compared with that of the two-cycle
componentwise splitting scheme (3) (Table I).

From Table I, it can be seen that the solution from the two-cycle component-
wise splitting scheme converges very slowly when µ is large. Convergence of the
numerical solutions from the generalized scheme was much faster than that
from scheme (3). This shows that the new scheme is suitable for simulating fast
transient phenomena.

We then chose ∆t = 0.02 with difference grid sizes, h = 0.05, 0.02 and 0.01.
Again, to obtain the steady state solution (which is zero), the time iteration was
continued until max|u| ≤ 10–3 was satisfied. The number of iterations for
µ = 5.0 is compared with that of the scheme (3) (Table II).

ADI schemes n(µ = 5) n(µ = 20 n(µ = 100)

Scheme (3) 90 98 428
Scheme (4) (ε = 0.05) 90 44 16
Exact solution 90 22 4

Table I.
Number of iterations, for
different µ values
n (n∆t = t)
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From Table II, it can be seen that the solution from the two-cycle component-
wise splitting scheme converges very slowly when the spatial grid is fine.
Convergence of the numerical solutions from the generalized scheme was much
faster than that from the two-cycle componentwise splitting scheme. For
h = 0.01, the two-cycle componentwise splitting scheme took 182 minutes of
CPU time on a SUN workstation while the generalized scheme only took 43
minutes. This shows that the new scheme is suitable for computations on fine
spatial meshes, which makes it applicable to micromanufacturing, such as the
prediction of the temperature profile in x-ray lithography.

We now consider the three-dimensional heat conduction on two layers. 

where K1(x, y, z) = µ1(x2 + y2 + z2 + 1), K2(x, y, z) = µ2(x2 + y2 + z2 + 1). This situ-
ation may be encountered in x-ray lithography, used in micromanufacturing. The
two layers are composed of a photoresist and a substrate. For this example, it is of
interest to predict the temperature profile in each of the layers. Each layer is cho-
sen to be of dimension 0.1cm × 0.1cm × 0.01cm as shown in Figure 1. The initial
and boundary value problem with homogeneous conditions (Um = 300 (K),
m = 1, 2 ) except U1 = 310.0 (K) at z = 0.0 is considered. Problem (20) with initial
and boundary conditions is computed by using the numerical procedure des-
cribed in Section 4. In this calculation, we chose ∆x = ∆y = 0.002cm, ∆z =
0.0002cm and ∆t = 0.02second. To obtain the steady state solution, the time
iteration was continued until 

(20b)

(20a)

ADI schemes n(h = 0.05) n(h = 0.02) n(h = 0.01)

Scheme (3) 90 184 396
Scheme (4) (ε = 0.05) 90 90 90
Exact solution 90 90 90

Table II.
Number of iterations, for

different h values
n (n∆t = t)
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max
i, j, k

|(u1)n+1
ijk – (u1)n–1

ijk | ≤ 0.0005 

was satisfied. We chose µ1 = µ2 = 5.0 (Wcm2/J) and ε1 = ε2 = 0.05. The steady
state solution was obtained when the number of iterations is 30. The maximum
temperature rise in the first layer is 3.18 (K). The contours of the temperature
profile in the cross section at y = 0.05 cm are plotted in Figure 2. We also chose
the procedure with ε1 = ε2 =0.0. The steady state solution was obtained when
the number of iterations is 2,174. Furthermore, the contours of the temperature
profile in the cross section at y = 0.05cm are oscillatory, as shown in Figure 3.
This shows that the two-cycle componentwise scheme is not suitable for the
problem with microscale in dimension.

6. Conclusion
A generalized two-cycle componentwise splitting method for solving three-
dimensional parabolic differential equations with variable coefficients has been
developed based on the idea of the regularized difference scheme. The method
is shown to be unconditionally stable, and suitable for simulating fast transient
phenomena and for computations on fine spatial meshes. A numerical
procedure that employs this method was developed to solve three-dimensional
parabolic differential equations with variable coefficients on multilayers. In the
procedure, the generalized “divide and conquer” method for solving tridiagonal
linear systems is applied, in order to overcome the problem with the unknown
value at the interface between layers. Numerical results show that the

Figure 2.
Contour of the
temperature
distribution in the cross-
section at y = 0.05cm
(ε1 = ε2 = 0.05)

U1 = 310 (K)

U2 = 300 (K)

Z

X

Figure 3.
Contour of the
temperature
distribution in the cross-
section at y = 0.05cm
(ε1 = ε2 = 0.0)

U   = 310 (K)

Z

X

1

U   = 300 (K)2
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generalized two-cycle componentwise splitting scheme is accurate and the
numerical procedure is efficient.
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Appendix
Consider the three-dimensional parabolic equation with variable coefficients

(A1a)

(A1b)

where K(x, y, z, t) ≥ a > 0 is the diffusivity coefficient. Let

(A2)
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where 

Obviously, AiAjU ≠ AjAiU, i ≠ j, i.e. operators Aα, α = 1, 2, 3, are not commutative. 
Let F be the Hilbert space of the real function L2(Ω) with the inner product (u, v) = ∫

Ω
uvdΩ and

the norm ||u|| = (u, u)
1–2. Denote by Φ the set of functions that are continuous in —Ω = Ω + ∂Ω and

that have continuous first and second derivatives in Ω. Let the elements of —Ωh = Ωh + ∂Ωh = {(xi,
yj, zk); 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, 0 ≤ k ≤ Nz + 1}. Define the inner products and the norms as
follows:

Two properties for stability are:
Property 1. Operator in A in (A.2) is semi-positive definite.

Property 2. If A is semi-positive definite in real Hilbert space Φ, then 

(A3)

where σ is a positive constant and ε ≤ 1 is a positive number.

Using the identity, 

one can obtain
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We now discuss the stability of the system (5), un+1 = Tn un–1 + 2τTn
1T

n
2T

n
3 f

n, with u° = g.
Consider an odd integer n. Then 

Hence, 

(A4)

where ||T|| = max{||Tn||, …, ||T1||} and m = 
n+1—2 is the number of factors {Tk} in TnTn–2 … T1.

Here we use the fact that ||Tkα|| ≤ 1 by property 2. Further, we obtain by property 2

(A5)

Hence, (A4) becomes

(A6)

where ||f|| = Max
j

||fj||h0. Hence, we conclude that the scheme (5) is unconditionally stable. 


